Solving Quadratic Equations with Complex Solutions Leave a Comment / By doina@highschoolmathtests.com / March 1, 2023 March 1, 2023 1. What is (are) the solution(s) to the quadratic equation \[x^{2}+ 4x + 5 = 0\] x = -2 ± i x = -2 x = -4 ± i x = 2 ± i 2. Which of the following is the quadratic formula? \[b \pm \sqrt{b^{2}-4 a c}\] \[\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a}\] \[\frac{-b \pm \sqrt{b^{2}-4 a c}}{4 a}\] \[\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\] \[\frac{-b \pm \sqrt{b^{2}-4 a c}}{a}\] 3. Solve this quadratic equation. \[m^{2}+2 m+9=0\] \[m=-1 \pm 2 i \sqrt{2}\] \[m=-1 \pm 4 i \sqrt{2}\] \[m=-2 \pm 2 i \sqrt{2}\] \[m=1 \pm 2 i \sqrt{2}\] 4. Solve this quadratic equation. \[x^{2}-7 x=-13\] \[x=\frac{-7 \pm i \sqrt{6}}{2}\] \[x=\frac{7 \pm i \sqrt{3}}{2}\] \[x=\frac{-7 \pm i \sqrt{3}}{2}\] 5. Solve this quadratic equation. \[2x^{2}-6 x=-16\] \[x=\frac{-3 \pm i \sqrt{23}}{2}\] \[x=\frac{-3 \pm \sqrt{23}}{2}\] \[x=\frac{3 \pm i \sqrt{23}}{4}\] \[x=\frac{3 \pm i \sqrt{23}}{2}\] 1 out of 5 Time's upTime is Up!